

Keith Wyman¹, Alexander R. Albrecht¹, Garrett D. Cole², **Mansoor Sheik-Bahae¹ Development of Semiconductor Disk Lasers for Sodium Guidestar Applications**

¹ Department of Physics and Astronomy, University of New Mexico ² Cyrstalline Mirror Solutions, Santa Barbara, California

Acknowledgements to the Center for Integrated Nanotechnologies, Olivia Byrd from the Air Force Research Labs, and the Air Force Office of Scientific Research

Outline

- **Introduction**
- **Background of Laser Guidestar (LGS)**
- **Sodium Beacon Requirements**
- **History of Sodium Beacon Laser Sources**
- **Vertical External-Cavity Surface-Emitting Laser (VECSEL)**
- **Thermal Management and Power Scaling**
	- **Distributed Bragg Reflector Free (DBR free)**
	- **In Well Pumping/Multipass**
	- **Gain Embedded Meta Mirror (GEMM)**
- **Summary**

Sodium Laser Beacon Background

- Guidestar Adaptive Optics on dim objects up to relative magnitude (RM) of 19
- Natural vs. Laser Guidestar (LGS)
- Sodium LGS
	- Excite mesospheric sodium atoms at 90km
	- RM of ~6 (depends on sodium layer)
	- Three current viable sodium guidestar sources
	- All sources are expensive and complex

$$
m_x - m_{x,0} = -2.5 \log_{10} \left(\frac{F_x}{F_{x,0}} \right)
$$

Max, C., American Astronomical Society, University of California at Santa Cruz, 2009.

1

Sodium Laser Beacon Requirements

 -3

59.8 MHz

35.5 MHz

16.5 MHz

 $3S_{1/2}$ 1772 MHz

 -2

 -2

 -2

 -1

 -1

 -1

 $m = -1$

- Beam Quality $M^2 < 1.1$ $3P_{3/2}$
- Linewidth < 3 GHz
- Power > 10 W
- Wavelength: 589 nm
	- Very hard to access
	- Non-linear optics often required
	- Second Harmonic Generation of 1178 nm
	- Sum Frequency Generation of 1319 nm, 1064 nm

 $F = 3$

 $F = 2$

 $F = 1$

 $F = 0$

 $F = 2$

 $F = 1$

 $\overline{2}$

 $\overline{0}$

 $\overline{0}$

 $m = 0$

 Ω

0

 $1 -$

Laser Sources for Sodium Beacons

1st Generation Dye Laser 2

3rd Generation Raman Fiber Amplifier

2nd Generation Sum Frequency Laser

- Denman et al., CfAO Conference Proceedings, November 2006.
- Bonaccini Calia D. et al., ESO Messenger Press Release, March 2010.
- Hackett, Shawn, UNM Digital Repository, November 2016

Optically Pumped Semiconductor Laser (OPSL)

- Vertical External-Cavity Surface-Emitting Lasers
	- High quality mode (M^2^o1)
	- Power scalability (106 W fundamental @ 1um)
	- Intracavity access (frequency conversion, cavity enhanced absorption,…)
	- ‒ Wavelength flexibility
	- ‒ Broadband gain

- M. Kuznetsov, et al., *IEEE Photon. Technol. Lett.* 9, 1997
- B. Heinen, et al., *Electron. Lett.,* 2012
- U. Keller and A. C. Tropper, *Phys. Rep.,* 2006
- A. Garnache, et al., *J. Opt. Soc. Amer. B*, 2000
- M. Scheller, et al., *Opt. Express,* 2010
- A. Quarterman, et al., *Nat. Photonics,* 2009
- A. Albrecht et al., *Opt. Express,* 2013

OPSL for Sodium Beacons

University of Technology

Hackett, S., et al. *SPIE Photonics West Proceedings*, 2016 Fallahi, M., et al. *IEEE Photonics Technol. Lett*., 2008. Kantola, E., et al. *Opt. Express*, March 2014.

Thermal Management and Power Scaling

Quantum Defect: Laser= 1178 nm , Pump=808 nm $\delta_{quantum} = 1 P_{laser}$ P_{pump} \approx 32%

Heat Loads:

Gain region: Quantum defect and non-radiative recombination losses

DBR region: pump absorption (\approx 11% of the incident pump power for 12 QWs)

Thermal conductivity coefficients:

- DBRs: ~ 20 W/(m∙K) : thermal bottleneck
- Diamond heat spreader: ~ 2000 W/(m∙K) (ideal)
- SiC heat spreader: \sim 400 W/(m⋅K) (the next best thing)

DBR-Free SDL Configurations

[Z. Yang, et al., Proc. SPIE 9349, 934905 (2015)]

DBR-Free Architecture

- M. Sheik-Bahae, U.S. Patent # 11/845,367 (2009)
- Z. Yang, et al.,, Opt. Express, 23 (26), 33164 (2015)
- H. Kahle *et al.*, *Optica*, vol. 3, no. 12, pp. 1506–1512 (2016)
- S. Mirkhanov *et al.*, *Electron. Lett.*, vol. 53, no. 23, pp. 1537–1539, (2017)

Dual-SiC Heat Spreader DBR-Free

16 W DBR-free semiconductor disk laser using dual-SiC-heatspreader

Yang, et al. Electronics Letters (Volume: 54 , Issue: 7 , 4 5 2018)

Also see: S. Mirkhanov *et al.*, *Electron. Lett.*, vol. 53, no. 23, pp. 1537–1539, 2017 (Univ. Dundee)

Wafer-Scale Fabrication

Cost-efficient manufacturing of high-power SDLs

Wafer-scale manufacturing process for a dual-SiC-heatspreader structure:

(a) direct bonding of epitaxial GaAs to SiC (b) lithography and wet etching of dicing lanes

(c) second bonding step for SiC/epi/SiC (d) Close up of a dicing lane for a 5x5 mm^2 chip

118 die @ 5 × 5 mm²from a single fab run

Optical Science and Engineering

Single-SiC Heat Spreader DBR-Free

Tip Tilt LGS

- Pumping two transitions simultaneously
	- Known as a Polychromatic LGS (PLGS)
- Tip/Tilt correction via Δn (dispersion)
- Greater Δn increases TTLGS performance
- Atmospheric transmission is poor for many transitions such as 330 nm
- Best candidate transition is 1140 nm
	- Large absorption cross section
	- OPSL able to be grown at 1140 nm
	- High atmospheric transmission (approximately 70%)

1140 nm OPSL Performance

40

 $M^2 = 1.0$ (Perfect Beam)

100

50

50

60

- High power at 1131 nm 1167 nm with BRF
	- Narrowband power at 1140 nm $> 12.5 W$
- 22.5 W max power with slope efficiency of 32%
- Slope Efficiency of 26%
- Bandwidth less than ~7.5 GHz (OSA limit)
- M^2 at 5 W

Absorbed Pump Power (W)

Hackett, Shawn, UNM Digital Repository, November 2016

University of New Mexico Optical Science and Engineering

In-Well Pumping

No DBR : No parasitic absorption of the pump

Quantum defect:

$$
\delta_{quantum} = 1 - \frac{h v_{laser}}{h v_{pump}}
$$

Pumped @ 808 nm

$$
\delta_{quantum} = 31.4\%
$$

Pumped @ 1070 nm

 $\delta_{quantum} = 9.2\%$

Yang, et al. SPIE Conference Proceedings, March 2019

GEMM Modeling Results

Conclusion

- **Laser power, linewidth, and beam quality for 1140 nm and 1178 nm OPSL devices were shown**
- **Multiple methods for thermal management of OPSL devices were discussed**
	- **DBR free OPSL with SiC heat spreader has been compared with traditional VECSEL**
	- **Multipass scheme has been demonstrated and can be used for In-Well Pumping**
	- **A GaAs-based GEMM-on-diamond structure can theoretically outperform traditional VECSELs by more than a factor of 3**

