

Semiconductor Guidestar Laser Development

 G. J. Fetzer, S. Rako, S. Floyd, L. Hill, N. Woody, T. Baringer, Areté Associates,
Sandalphon, Cinnabar Optics and
C. D'Orgeville, The Australian National University

> AO4ELT6 - JUNE 9-14, 2019, QUÉBEC CITY, CANADA Laser Workshop

- Performance Objectives
- Current Programs
- System Design
- Power 1178 and 589 nm
- Beam Quality
- Laser Mode Selection Principles
- Single Frequency Power
- Locking to Na Resonance
- Summary and Next Steps

Areté's VECSEL GSL System

Goal: Design a system that:

- Demonstrates the viability of VECSELs for Guidestar applications
- Serves as a foundational prototype on which to build future units
- Lowers acquisition and maintenance costs of GSLs
- Provides utility to astronomy, space situational awareness, communications, and other applications

and are she for

Characteristic	Values and Rationale						
Primary λ and Power	8-20 W locked to Na(D _{2a}) ~589 nm						
Secondary λ and Power	Tunable and lockable at D_{2b} $\Delta\lambda$ = 1.7 GHz from D_{2a}						
Waveform	Continuous Wave						
Linewidth	5-50 MHz						
Fine Tuning	~1 GHz, continuous Scan sodium transition to enable line locking						
Gross Tuning	~5 GHz, does not need to be continuous Allow capture of Rayleigh backscatter						
Beam Quality	M ² < 1.2 Near Diffraction Limited						
Polarization	Well defined polarization, contrast ratio >20 Circular polarization is broadcast						
User Interface	PC Based GUI						
Diagnostics	Wavelength and power						
Power	110-240 V AC						
Water	4-8 slpm flow of <i>cool</i> water						

ANU Program Snapshot

- Areté is supplying a prototype VECSEL sodium guidestar laser to Australian National University (Celine D'Orgeville).
- ANU is the lead organization of a consortium consisting of:
 - Australian Astronomical Observatory (AAO)
 - University of New South Wales (UNSW),
 - The Giant Magellan Telescope Organization
 - EOS Space Systems
 - Lockheed Martin Space Systems
- The laser will be installed and tested on the sky at the Mt Stromlo Observatory near Canberra AUS
- Will represent the first on sky VECSEL GSL demonstration in the world!

	2018				2019				
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	
Tech Demonstrator									
Design									
Procure and Fab									
Integration & Test									
Delivery									
On-Sky									

Areté's Air Force STTR Program

- Continue to increase 589 nm VECSEL output powers to greater than 20W
- Produce a proof-of-concept system capable of installation at an observatory for an on-sky test at 589 nm wavelength
- Deliver a second VECSEL GSL to an observatory (Starfire Optical Range)
- Measure on-sky returns from a VECSEL SGSL at SOR

Sodium Cell Excitation

	2019				2020				
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	
Power Scaling									
Procure and Fab									
Integration & Test									
Delivery									
On-Sky									

VECSEL System for On-Sky Demonstration

Areté Associates

597 1

2 - 2 - 2 - S. Frid Eller

Weight ~ 30-40 lbs

Areté Associates

High Extraction Efficiency Achieved

with Intracavity Doubling

 Intracavity doubling is a highly attractive method of converting from the fundamental wavelength to 589 nm

and some has find

- Low complexity
- Highly efficient

Good Beam Quality at 589 nm

2 Denter State Party

Gain Bandwidth supports lasing over broad range of frequencies, allowing large number of longitudinal **Laser Cavity Modes**.

BRF provides tunability of center wavelength and coarse frequency selection.

Etalon provides fine frequency selection of single cavity mode.

Piezo shifts laser modes in wavelength for extra-fine tuning on resonance

 $\ensuremath{\textbf{NLO}}$ not shown but has strong impact on frequency selection

Frequency Selection on a Few Scales

State of the second state of the second

Single Frequency Operation

In the IR, laser "prefers" to run single-frequency.

The lasing mode steals gain from other modes and tends to be a stable equilibrium.

2 - 2 romin tent B

When intracavity doubling, achieving single-frequency is a delicate balance.

The lasing mode steals gain from other modes, but also incurs more intracavity loss due to nonlinear output coupling.

Despite challenges, reasonable output powers at 589 nm single-frequency on sodium resonance are presently achievable Performance can an be improved with careful optimization Work is underway to stabilize frequency while improving extraction efficiency

Areté Associates

ast a

2 - 2 - 2 - A - L Elen

Wavelength Control Scheme

Line Locking

- IR wavelength measured while operating at 589 nm and tuning to resonance
- Mode-hop-free tuning over sodium resonance demonstrated
- System can be locked to D2a or D2b line center or offset from line centers

and the second of the second of the

Summary & Next Steps

- SSGSLs are capable of achieving performance characteristics (power, frequency tuning/locking) sufficient for on-sky demonstration
- Presently implementing measures to improve frequency stability and power
- In coming months will begin prototype integration and test
 - Line locking refinement
 - Packaging
 - Testing
- Scheduled for Installation 2019 Q3 at Mt. Stromlo, Canberra Australia

