

TOPTICA LASER COMMISSIONING AT GEMINI NORTH

Laure Catala, Jeff Donahue, Thomas Schneider, Christine Cunningham, Chas Cavedoni, Angelic Ebbers, Jesse Ball, Adam Smith, Jocelyn Ferrara, Gaetano Sivo, Eduardo Marin, Andrew Stephens, Trent Dupuy, Marie Lemoine Busserole, John Bassett, David Henderson, Paul Hirst

Gemini North laser operation history

- Laser Upgrade summary
- On-sky commissioning:
 Laser Optimization
 Laser spot verification
 AO system performance in LGS mode
- Back to science 1st semester
- Summary and Future Plans

Laure CATALA

GEMINI North - Laser Operation history

AO system	R _{lim}	FOV ["]	Strehl [H-band]	Sky Coverage [%]
ALTAIR (NGS)	12-15	20	35	<1
ALTAIR (LGS)	15-18	20	20	~30
ALTAIR (LGS+P1)	14	50	8	~100

Laure CATALA

GEMINI North Laser Operation history

LGS Science Observation time [hours on sky]

Year \ Semester	Α	В
2010	83	68
2011	60	68
2012	80	91
2013	116	48
2014	12	14
2015	10	2
2016	12	

Laure CATALA

LASER UPGRADE SUMMARY

- LMCT laser operations stopped in 2016.
- Toptica laser factory acceptance test in October 2017.
- January August 2018 installation of the Toptica laser on the telescope.
- October 2018 on-sky commissioning.

LASER UPGRADE SUMMARY

8

Beam Injection Module

Beam expander
 Half wave plate
 Polarizing beam splitter cube
 Quater wave plate

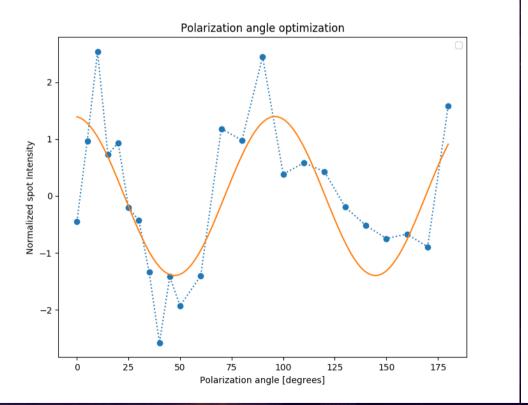
Laure CATALA

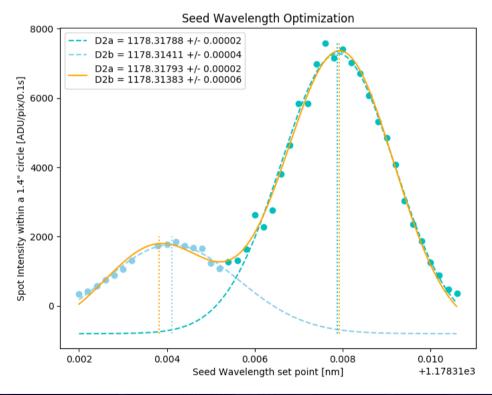
5. Safety shutter
 6. BIM steering mirror 1
 7. BIM steering mirror 2
 8. Beam dump

LASER UPGRADE SUMMARY

Beam Transfer Optics

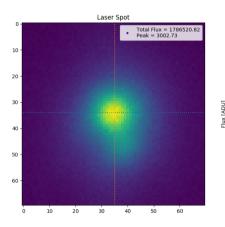
L4AO 13 - Québec City - 7 June 2019

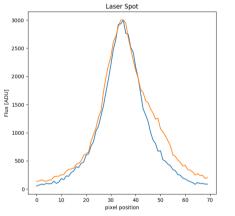

Laure CATALA

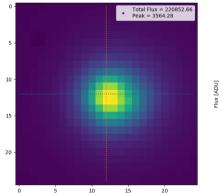

LASER OPTIMIZATION

Seed Wavelength

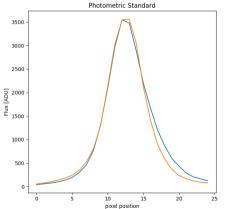
Laure CATALA

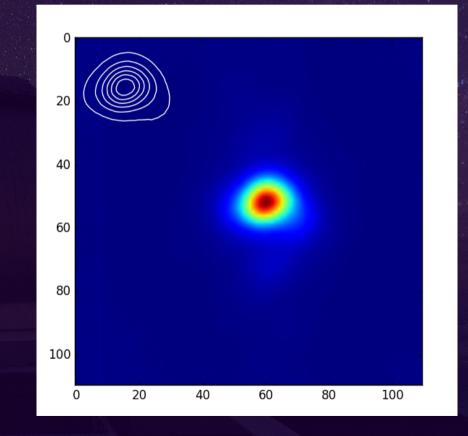






LASER SPOT and PHOTON RETURN


Equivalent magnitude
 Vmag = 7.3



Photometric Standard

Spot size
 FWHM = 1.49" / 1.34"

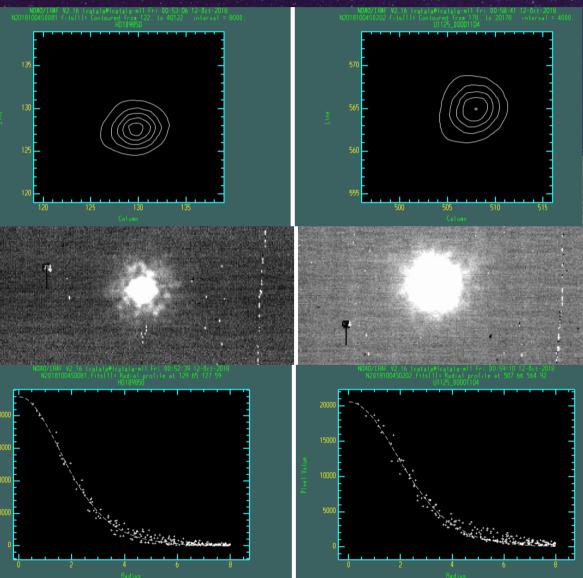
L4AO 13 - Québec City - 7 June 2019

Laure CATALA

NGS On-axis

Vmag = 8.75

E| = 78


Seeing = 0.37''

K' (2.12 microns)

FWHM = 91 mas

Laure CATALA

Exploring the Universe. Sharing its Wonder

AO LGS mode Performance Verifications

LGS On-axis Vmag = 12.17 Seeing = 0.36'' El = 73 K' (2.12 microns)

FWHM = 105 mas

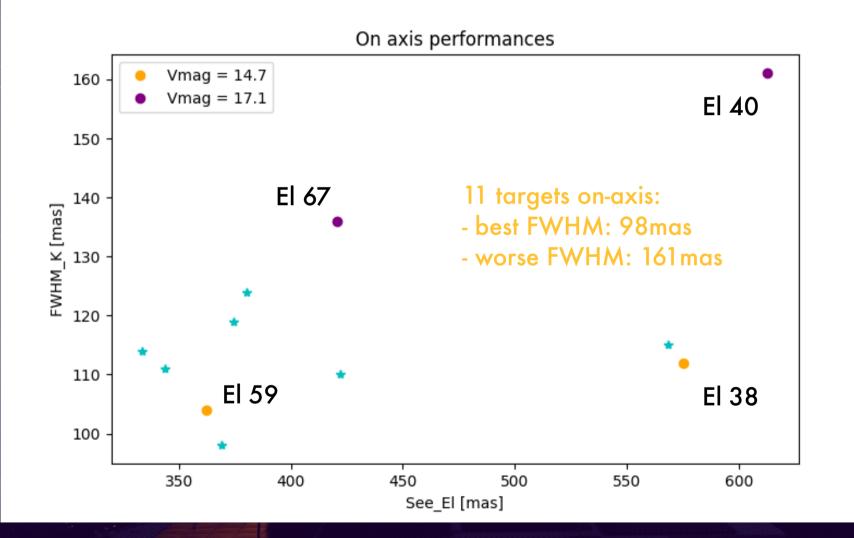
L4AO 13 - Québec City - 7 June 2019

AO LGS mode Performance Verifications

Using NIRI (0.214"/pix - FOV:21.9x21.9") with the K' filter (2.12 microns)

NGS vs. LGS

On-axis: - range of TTGS mag (Vmag = 11.5 - 17.1) - range of elevation (38 - 79 deg)


On-axis vs. Off-axis vs. LGS+P1

Non-sidereal target

Laure CATALA

AO LGS mode Performance Verifications

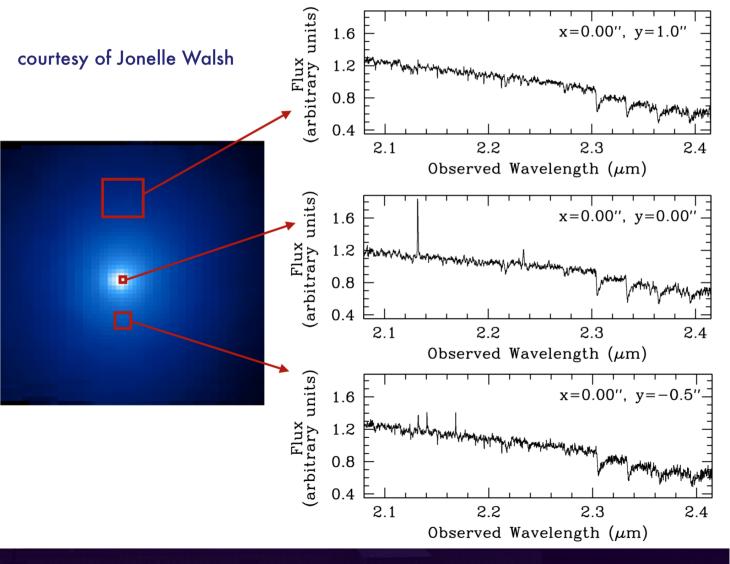
Laure CATALA

Laure CATALA

AO LGS mode Performance Verifications

AO mode	NGS or TTGS V mag / separation	Seeing (@zenith)	Elevation [deg] (seeing @ El)	NIRI imaging in K' FWHM		
NGS vs LGS comparison (on-axis)						
NGS	8.75 / on-axis	0.37"	78 (0.40")	91 mas		
LGS	12.17 / on-axis	0.36"	73 (0.40")	105 mas		
Faint TTGS and Elevation dependance (on-axis)						
LGS	17.1 / on-axis	0.42"	67 (0.44")	136 mas		
LGS	17.1 / on-axis	0.45"	40 (0.59")	161 mas		
Performance off-axis						
LGS	11.53 / on-axis	0.48"	49 (0.57")	115 mas		
LGS	11.53 / 22" off-axis	0.47"	47 (0.57")	120 mas		
LGS+P1	10.96	0.37"	51 (0.45")	209 mas		

BACK TO SCIENCE - 1st semester



First Science observation with NIFS

BH mass

Using NIFS + LGS AO to address the bias of galaxy sizes and luminosities in current data samples.

L4AO 13 - Québec City - 7 June 2019

Laure CATALA

BACK TO SCIENCE - 1st semester

2019A – Summary of 1st Semester of Science

4 NIFS + LGS programs 37.2 observing hours (science + calibrations) ← → 6.8%

Proposals for 2019B:
Overall 1.3% of total time (2460 hours)
NIFS: 31.2 hours (10%)
NIRI: 0.8 hours (0.7%)

BACK TO SCIENCE - 1st semester

	Year \ Semester	Α	В
WFS counts per	2010	139	120
subaperture [ADU]	2011	120	118
Scaled to 1kHz 2019-A 290	2012	139	148
	2013	103	125
	2014	106	105
	2015	98	93
	2016	86	

Laure CATALA

SUMMARY and FUTURE PLANS

Toptica "plug & play" system and stability allow to move from block operation to queue >>> 2019A was a transition semester

16 years old system RTC limitation >>> upgrade plan in discussion. Signs of hardware failure >>> Dead actuator found on the DM.

> MCAO system for GEMINI North founded Project officially started in October 2018

See Eduardo Marin talk on Saturday (Session 6 @ 12:00) For the GNAO LGS facility current design

Laure CATALA

THANK YOU!

Background picture* credit: Jason Chu *original does not have the purple overlay