AO-PRE-CORRECTION IN LASER COMMUNICATION AND GLAO BASED ON THE SELECTROMAGNETIC DM TECHNOLOGY

STEFAN KUIPER, MATTHEW MANISCALCO, WOUTER JONKER, HANS PRIEM, CEES COOLEN, MARK CHUN

innova for life

-

TNO innovation for life

CONTENT

- 1) Introduction TNO
- 2) Applications; Laser-com and GLAO
- 3) DM-technology
- 4) Laser-com results
- 5) ASM for GLAO development
- 6) Outlook

TNO'S EXPERIENCE WITH AO

> Application fields; Ground based astronomy, Semiconductor, Laser Communication, and Space

> Key idea for AO-corrections:

Increase data-throughput by pre-correcting the laser-beam for turbulence induces aberrations

Mostly driven by up-link performance

innovation

Key Idea for AO:

Improve resolution over a wide field of view by compensating Ground layer aberrations.

Drivers for adaptive secondaries:

- 1. Wide field of view corrections
- 2. High-throughput and simplified optics
- 3. Minimize Thermal Background

> In both applications; AO is an integral part of the overall system

> **<u>Reliability and robustness</u>** is of upmost importance to guarantee **<u>availability</u>**

-20

-300

-200

-100

0

Current [mA]

100

18mm

¢.

Linear range of ±8N, 99.5%

300

linearity, hysteresis <1%.

200

TNO DM-TECH: MAIN ASSETS

- **1. High reliability** ; (i) No wear/aging, (ii) Compliancy (iii) redundant windings
- 2. High linearity, repeatability and stability (compatible with slow AO update rates)
- 3. Low power dissipation (~ few mWatts per actuator)
- 4. Compact, low power electronics (PWM)
- 5. High force per volume; Scalable to large apertures, and actuator pitches

4,3 mm pitch actuators

PWM drive electronics

LASER COMMUNICATION

- > Ground terminal bread-board
- **Goal:** Verify performance gain with AO and sensitivity for Point-Ahead Angle
- > ESA Scylight program in cooperation with DLR
- > Uses a 57-actuator DM by TNO

Ground terminal AO bench

innovation for life

10 KM TEST

10 km ground to ground test in cooperation with DLR >

GROUND TEST RESULTS

> Link performance tested for different number of AO-modes and

PA-Angles from 2 to 8µrads

- Maximum gain is 6dB with 16 AO-modes corrected
- > Hence, a improvement of the link performance by a factor of 4.
- Down-link improvement >20dB

Raw data irradiance sensor

First results video

innovation for life

Performance gain

Optical SatCom

FSM FOR LASER-COMS

- Targeted for fast tip/tilt corrections and PAA on the <u>space</u> <u>segments</u>
- > Utilized the same actuator technology (different configuration)
- Prototype successfully tested (July-2017)
- Currently going through industrialization phase with industrial partner Demcon
 DEMCON

innovation for life

Main design Specifications	
Tip/tilt range	±2° (Optical)
Bandwidth (-3dB)	>1kHz
Jitter	< 1 µrads
Optical coating	Enhanced gold,
	>98% refl. @ 1550nm
Admissible Optical	~10Watts
Power	
Mirror diameter	Ø20mm
Volume	Ø24x30mm
Dependability	Redundant motor
	windings

FSM prototype

LASER COMS: NEXT STEPS

- > Realization of a AO-corrected Ground terminal in The Hague
- > Collaboration with Airbus NL

o innovation for life

AIRBUS

INO innovation for life

ASM DEVELOPMENT FOR GLAO

- > TNO's DM technology highly suited for large adaptive secondary mirrors
- > First feasibility study based on TMT requirements (Ø3.04m, 3462 actuators) shows potential;
- > Key assets:
 - > Low power consumption

Concept design ASM for TMT

- > Low-complexity by omitting internal feedback and liquid cooling.
- > High compactness; Within volume of passive M2, (retro-fitting)
- > Inherently high reliability (low complexity, free of wear/aging)

Specifications		
Mirror diameter	Ø3.04m (Convex)	
Number of actuators	3462	
Actuator pitch	50mm	
Actuator stroke	26µm, Free stroke 8 µm, inter-actuator	
Hysteresis	<1%	
Actuator disipation	~12 W (3462 actuator)	
Total dissipation	~300W (control boards)	
Overall mass	~2.5 Tons	

CAD model

LAUNCHING PROJECT: ASM FOR UH-88

- First step: ø63cm ASM for the UH-88 telescope on Mauna Kea
- > Consortium partners:
 - > VDL ETG: actuators and integration
 - > Harris: convex ULE face sheet
 - > Hyperion; Drive electronics
- > Status: PDR milestone reached May 2019. Target for installation in Hawaii end 2020

UH-88 ASM specifications

Specifications	
Mirror diameter	Ø630mm (Convex)
Number of actuators	204
Actuator pitch	40mm, radial
Actuator stroke	35μm, Free stroke 6 μm, inter-actuator
Hysteresis	<1%
Actuator disipation	~2.3 W (204 actuator)
Total dissipation	~20W (control boards)
Overall mass	~50kg

UH-88 ASM CAD render

CONCLUSIONS & OUTLOOK

- > TNO developing AO-systems based on unique electromagnetic DM technology
- > Significant progress in the fields Laser-coms and GLAO

ACKNOWLEDGEMENT

for life

