AO-PRECORRECTION IN LASER COMMUNICATION AND GLAO **SELECTROMAGNETIC DM TECHNOLOGY**

STEFAN KUIPER, MATTHEW MANISCALCO, WOUTER JONKER, HANS PRIEM, CEES COOLEN, MARK CHUN

GD

innova

fo

 \overline{AB}

innovation

CONTENT

-
- CONTENT
1) Introduction TNO
2) Applications; Laser-com and GLAO **2) Applications; Laser-com and GLAO**
2) Applications; Laser-com and GLAO
2) DM-technology **CONTENT**
1) Introduction TNO
2) Applications; Laser-com and GLAO
3) DM-technology
4) Laser-com results CONTENT

1) Introduction TNO

2) Applications; Laser-com and GLAO

3) DM-technology

4) Laser-com results

5) ASM for GLAO development **CONTENT**

1) Introduction TNO

2) Applications; Laser-com and GLAO

3) DM-technology

4) Laser-com results

5) ASM for GLAO development

6) Outlook 1) Introduction TNO
2) Applications; Laser-com and GLAO
3) DM-technology
4) Laser-com results
5) ASM for GLAO development
6) Outlook
-
-
-
-

TNO'S EXPERIENCE WITH AO

Application fields; Ground based astronomy, Semiconductor, Laser Communication, and Space

$\mathcal Y$

Increase data-throughput by pre-correcting the laser-beam for turbulence induces aberrations

Mostly driven by up-link performance

innovation

Key Idea for AO:

Improve resolution over a wide field of view by compensating Ground layer aberrations.

Drivers for adaptive secondaries:

-
-
-

In both applications; AO is an integral part of the overall system λ

Reliability and robustness is of upmost importance to guarantee availability λ

TNO DM-TECH: MAIN ASSETS 1. **TNO DM-TECH: MAIN ASSETS**
1. High reliability ; (i) No wear/aging, (ii) Compliancy (iii) redundant windings
2. High linearity, repeatability and stability (compatible with slow AO update rates) **2. High reliability** : (i) No wear/aging, (ii) Compliancy (iii) redundant windings
2. High linearity, repeatability and stability (compatible with slow AO update rates)
3. Low power dissipation (~ few mWatts per actuator) **3. Low power dissipation (2014)**
3. High reliability : (i) No wear/aging, (ii) Compliancy (iii) redundant w
3. Low power dissipation (~ few mWatts per actuator)
3. Low power dissipation (~ few mWatts per actuator)
4. Comp TNO DM-TECH: MAIN ASSE

1. High reliability ; (i) No wear/aging, (ii) Compliancy (iii)

2. High linearity, repeatability and stability (compatible

3. Low power dissipation (~ few mWatts per actuator)

4. Compact, low powe **TNO DM-TECH: MAIN ASSETS**

1. High reliability : (i) No wear/aging, (ii) Compliancy (iii) redundant windings

2. High linearity, repeatability and stability (compatible with slow AO update rates)

3. Low power dissipation

-
-
-
-
-

 10_{mm}

LASER COMMUNICATION

- **Ground terminal bread-board**
- Goal: Verify performance gain with AO and sensitivity for Point-Ahead Angle
- **ESA Scylight program in cooperation with DLR**
- Uses a 57-actuator DM by TNO

10 KM TEST

10 km ground to ground test in cooperation with DLR

GROUND TEST RESULTS

If Link performance tested for different number of AO-modes and

PA-Angles from 2 to 8µrads

- Maximum gain is 6dB with 16 AO-modes corrected
- Hence, a improvement of the link performance by a factor of 4. $\sum_{i=1}^{n}$
- Down-link improvement >20dB λ

Raw data irradiance sensor **Performance gain**

First results video

innovation
for life

FSM FOR LASER-COMS

- Targeted for fast tip/tilt corrections and PAA on the **space** $\mathbf{\mathcal{E}}$ segments
- Utilized the same actuator technology (different configuration) λ
- Prototype successfully tested (July-2017) λ
- Currently going through industrialization phase with industrial λ partner Demcon
 DEMCON

FSM writing letters (40 Hz)

innovation

FSM prototype

LASER COMS: NEXT STEPS **ASER COMS: NEXT STEPS**
Maturing AO- technology for feeder-links, including high power DM
Realization of a AO-corrected Ground terminal in The Hague
Collaboration with Airbus NL

-
- Realization of a AO-corrected Ground terminal in The Hague
- Collaboration with Airbus NL

THE MO FOR GLAO
THE MO'S DIM technology highly suited for large adaptive secondary mirrors
First feasibility study based on TMT requirements (\emptyset 3.04m, 3462 actuators) shows potential;
Key assets: **ASM DEVELOPMENT FOR GLAO**
TNO's DM technology highly suited for large adaptive secondary mirrors
First feasibility study based on TMT requirements (*0*3.04m, 3462 actuators) shows pot
Key assets:

-
- First feasibility study based on TMT requirements (\emptyset 3.04m, 3462 actuators) shows potential;
- Key assets:
	- **Low power consumption**
	- **Low-complexity** by omitting internal feedback and liquid cooling.
	- High compactness; Within volume of passive M2, (retro-fitting)
	- Inherently high reliability (low complexity, free of wear/aging)

Concept design ASM for TMT

LAUNCHING PROJECT: ASM FOR UH-88

- First step: ø63cm ASM for the UH-88 telescope on Mauna Kea
- Consortium partners:
	- **▶ VDL ETG: actuators and integration**
	- Harris: convex ULE face sheet
	- Hyperion; Drive electronics
- Status: PDR milestone reached May 2019. Target for installation in Hawaii end 2020

UH-88 ASM specifications UH-88 ASM CAD render

CONCLUSIONS & OUTLOOK

- TNO developing AO-systems based on unique electromagnetic DM technology
- Significant progress in the fields Laser-coms and GLAO

ACKNOWLEDGEMENT

innovation

